

Reliability Maintenance What is it?

Edward LaPreze, CMRT

Level II Thermographer
Category II Vibration Analyst
Certified in Precision Alignment / Balancing
SMRP Member

Reliability_"the

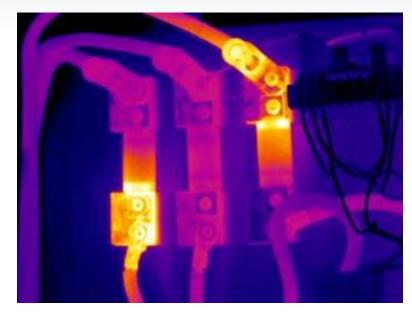
ability of a piece of equipment to perform a required function for a specific time period under stated conditions"

Precision Alignment

- Best Foundation
- Ensure most efficient transfer of power
- Belt, Seals and Bearing life
- Proper Belt Tensions
 - Load has a cubed effect on life of bearings

Precision Alignment

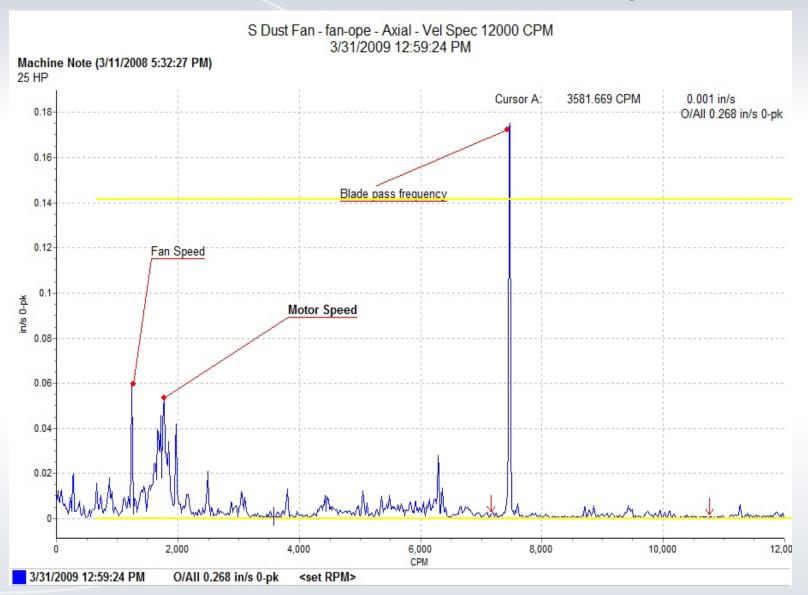
	Angular Misalignment Mils per in. .001/1 in.		Offset Misalignment Mils .001 in.	
RPM	Excellent	Acceptable	Excellent	Acceptable
3600	0.3/1 in.	0.5/1 in.	1.0	2.0
1800	0.5/1 in.	0.7/1 in.	2.0	4.0
1200	0.7/1 in.	1.0/1 in.	3.0	6.0
900	1.0/1 in.	1.5/1 in.	4.0	8.0


Infrared Surveys

- The only technique for locating resistance
- Ensures the best power quality to equipment
- Reduce electrical energy loss
- Reduces heat sources
- Prevent catastrophic failures

Infrared Surveys

Ultrasonics


- Motor Lubrication
- Bearing Lubrication
- Compressed Air Leak
 Detection

Diameter	CFM of	x 8 =	Annual cost	Annual cost
of air leak	air lost at 100 psig	cubic ft.	at \$0.18 per 1,000 cu. ft. *	at \$0.32 per 1,000 cu. ft. *
		lost per day		
1/32"	1.62	777.60	\$51	\$91
1/16"	6.49	3,115.20	\$205	\$364
1/8"	26	12,480.00	\$820	\$1,458
1/4"	104	49,920.00	\$3,280	\$5,831
3/8"	234	112,320.00	\$7,379	\$13,119
1/2"	415	199,200.00	\$13,087	\$23,267
3/4"	934	448,320.00	\$29,455	\$52,364

Source: John Henry Foster website

http://www.ihf.com/home/services/air-compressors/cost-of-air-leaks

Vibration Analysis

Continuous Monitoring

MachineDoctor™

Vibration in 3D

Acoustic Emission

Temperature

RPM measurement

Humidity

Magnetic Flux

6 in 1 Wireless Sensor

Questions?

Thank you!

